Information on Residential Solar Installation

This is a SAMPLE price chart for purchasing solar electric panels.

Rebates are for Tucson Electric Power – other utilities are somewhat different, but in the same range.

TEP provides a rebate of \$3,000 per kilowatt (DC), up to 40% of the cost of the system.

Many factors affect the price of a system - THIS CHART IS MEANT AS A BASIS FOR COMPARISON ONLY.

<u>System Size</u>	<u>Equivalent</u>	<u>KWh</u>	<u>Total</u>	<u>TEP</u>	<u>State</u>	<u>Federal</u>	<u>Net</u>	<u>Estimated</u>
in DC Watts	<u>System</u>	<u>Produced</u>	System Cost Before	<u>Rebate</u>	Tax Credit	Tax Credit	Project Cost	<u>Payback</u>
	in AC Watts	<u>Each Year</u>	Rebate and Tax					<u>Period</u>
			<u>Credits</u>	\$3,000/kW	\$1,000	<i>\$3,000</i>		
1520 W	1079 W	2562 kWh	\$13,081	-\$4,560	-\$1,000	-\$2,000	\$5,521	15.0 years
=	=							
1.52 kW	1.079 kW							
2470	1754	4163	\$18,423	-\$7,410	-\$1,000	-\$2,000	\$8,013	13.2 years
3040	2158	5124	\$21,388	-\$9,120	-\$1,000	-\$2,000	\$9,268	12.7 years
4560	3238	7686	\$30,254	-\$13,680	-\$1,000	-\$2,000	\$13,574	12.5 years
6080	4317	10248	\$40,023	-\$18,240	-\$1,000	-\$2,000	\$18,783	12.8 years
6840	4856	11530	\$44,514	-\$20,520	-\$1,000	-\$2,000	\$20,994	12.8 years
8550	6071	14412	\$54,434	-\$25,650	-\$1,000	-\$2,000	\$25,784	12.6 years

Many variables can affect the price:

- each installation company has different rates and different brands
- cost of permitting
- available roof space, slope of the roof, and difficulty/time of the installation
- as a rule, the bigger the system, the greater the volume discount

Inverters – changing DC watts produced into usable AC watts:

- solar panels produce DC (direct current). However, almost everything in your house runs on AC (alternating current), which is what the utility provides.
- the power from your panels must flow through an **inverter** which changes it to AC, which can be used for your home or pushed onto the grid.
- there is a loss of power by about 20 30% when it is converted from DC to AC.
- the utility incentive is for the system size in DC watts.

Conversion chart:

1000 watts (W) = 1 kilowatt (kW)example: a house might use a 2 - 5 kilowatt system 1000 kilowatt (kW) = 1 megawatt (MW)example: a big box store might use a 200 kilowatt system 1000 megawatts (MW) = 1 gigawatt (GW)example: a coal power plant or a thermal solar plant might produce 200-500 megawatts of power

- A kilowatt hour (kWh) is the amount of electricity it takes to run a 100 watt light bulb for 10 hours.
- The average household uses around 11,000 kilowatt hours (kWh) per year.